
1

Algorithms for Vertex QT-DSM Tree during Proton-Proton Collisions

RHIC 2012 Run

Eleanor Judd

Chris Perkins

March 05, 2013

Change Log:

Date Description

February 22. 2009 First version for PP Collisions where the original CTB and layer-0 DSM

boards have been replaced with QT boards. Also, the VPD has been

added into this branch of the DSM tree since it is designed to detect the

same vertex as the BBC and ZDC.

March 31, 2010 BB102 algorithm changed. The BB102 QT board is now running an

algorithm specific to the BBC large tiles. Its output is two TAC values

and two hit flags, one pair for the East side and the other for the West

side. The BB102 DSM algorithm is now a simplification of the BB101

algorithm, which calculates a TAC difference and selects bits to send to

the scaler system.

January 11, 2011 First version for 2011 proton-proton data taking. The ZD101 algorithm

has been changed. The size of the TAC values produced by the QT

boards have been reduced from 12 to 10 bits, to make room for

truncated sums from each of the East and West sides. The new ZD101

algorithm passes those sums through to the scaler board, instead of

passing some of the TAC bits. The ZD101 output to VT201 has been

kept the same as in 2009, so the VT201 algorithm from 2009 can still be

used

March 14, 2012 Changed the ZD101 algorithm. The TAC overflow and underflow bits

going to the scaler system have been combined. This frees up space for

the AND of the threshold bits from the East and West sides.

March 5, 2013 Changed the VT201 algorithm for the 2013 running. The two ZDC

East/West threshold bits are combined into one coincidence bit to make

space for a minimum bias bit.

The Vertex branch of the DSM tree is used to locate the primary vertex of the RHIC beam

collisions at STAR. All three relevant trigger detectors connect to this branch: Zero Degree

Calorimeters (ZDC), Beam-Beam Counters (BBC) and the Vertex Position Detector (VPD).

The raw detector signals are digitized and pre-processed in QT boards. The DSM tree is then

used to calculate TAC differences and combine ADC information to produce the data needed

for effectively triggering on proton-proton collisions.

Layer 0 QT Boards: BBQ_BB001:002, BBQ_VP001:002

File: qt32b_l0_v5_6.mcs

Description:

2

 This algorithm forms a 16bit ADC Sum and 12bit TAC Max. Only channels that

satisfy a “good hit” requirement are included in the ADC Sum and TAC Max. A “good

hit” is defined as one where the ADC value is greater than some threshold and the

corresponding TAC value is greater than TAC_MIN and less then TAC_MAX. The

channel mask register can be used but note that ADC and TAC channels must each be

masked individually.

Inputs:

 QT8A: 4 PMT ADC, 4 PMT TAC

 QT8B: 4 PMT ADC, 4 PMT TAC

 QT8C: 4 PMT ADC, 4 PMT TAC

 QT8D: 4 PMT ADC, 4 PMT TAC

Registers (1 Set Per Daughter Card):

 Alg. Reg. 0 (Reg 13): ADC_Threshold

 Alg. Reg. 1 (Reg 14): TAC_MIN

 Alg. Reg. 2 (Reg 15): TAC_MAX

 Reg. 11: Channel Mask

LUT:

 Timing adjustments/pedestal subtraction for each PMT

Action (21x RHIC Clock):

 1
st
: Mask channels and Latch inputs

 If mask bit = 1, channel data = 0

 2
nd

: For each PMT (4 per daughter board):

 ADC above threshold: ADC > PMT_ADC_Thresh → Good_ADC

 TAC above threshold: TAC > TAC_MIN → Good_TAC_MIN

 TAC below threshold: TAC < TAC_MAX → Good_TAC_MAX

 3
rd

: Make good_hits(0-3):

 good_hit(i) = Good-ADC(i) && Good_TAC_MIN(i) && Good_TAC_MAX(i)

 4
th

: Sum channels 0+1 subject to good hit requirements → Int_sum_0

 Sum channels 2+3 subject to good hit requirements → Int_sum_1

 Compare TAC channels 4, 5 subject to good hit requirements → Int_max_0

 Compare TAC channels 6, 7 subject to good hit requirements → Int_max_1

 5
th

: Sum Int_sum_0 + Int_sum_1 → Int_sum_2

 Compare Int_max_0, Int_max_1 → Int_max_2

 6
th

: Sum Int_sum_2 + Sum from previous daughters → ADC_Sum

 7
th

: Delay Daughter D Int_max_2

Compare Int_max_2 to TAC Max from previous daughters → TAC_Max

3

 (For Daughters A-C)

 8
th

: Delay Daughter D Int_max_2

 9
th

: Delay Daughter D Int_max_2

 10
th

: Compare Daughter D Int_max_2 to TAC Max from previous daughters → TAC_MAX

 11
th

: Latch Output Bits to next daughter or L0 FPGA

 (0-15) : ADC_Sum

 (16) : ‘0’

 (17-28) : TAC_Max

 (29-33) : ‘0’

Algorithm Latch: 2

L0 Output to DSM:

 (0-15) : ADC Sum

 (16-27) : TAC Max

 (28-31) : ‘0’

1. Layer 1 DSM Boards: BBC_BB101

The BB101 DSM board processes data from the BBC small-tile detector. The algorithm

receives ADC-sum and fastest-TAC data from the QT boards. The ADC sums are compared to

thresholds. A set of bits specified by the user is chosen from each incoming TAC value to

send to the scaler system. In parallel, the TAC difference is calculated. The difference is set to

zero if either of the two incoming TACS is zero, because a TAC value of zero implies there

were no good hits on that side of the BBC.

RBT File: bbc_bb101_2009_a.rbt

Users: BB101

Inputs: Ch0/1 = QT Board BB001 (East)

Ch2/3 = QT Board BB002 (West)

Ch4/7 = Unused

From each QT board:

bits 0:15 = ADC-Sum

bits 16:27 = Max TAC (Value of zero implies NO good hits)

LUT: 1:1

Registers:

Four registers, all thresholds can be set independently

R0: BBCsmall-EastADCsum_th (16 bits)

R1: BBCsmall-WestADCsum_th (16)

R2: BBCsmall-EastTAC-select (3)

4

0 => select bits 0:6

1 => select bits 1:7

…

5 => select bits 5:11

R3: BBCsmall-WestTAC-select (3)

Same value definitions as for R2

Action:

1
st
 Latch input

2
nd

 Compare each ADC-sum to its threshold

Calculate: TAC difference = 4096 + TAC-E – TAC-W

Define: Good-TAC-E = TAC-E > 0, same for West side

Make all possible bit selections from TAC-E and TAC-W, including overflow

logic. For example:

TAC-E-overflow-0 = TAC-E(7), (8), (9), (10) or (11)

If (TAC-E-overflow-0 = 1) then TAC-E-scaler-0 = 127

Else TAC-E-scaler-0 = TAC-E(0:6)

Same logic for all possible bit selections from TAC-E (see description of

register R2) and TAC-W

3
rd

 Delay ADC-sum threshold bits

Zero out TAC difference if either Good-TAC-E or Good-TAC-W is false,

otherwise just delay TAC difference

Use R2 to select the TAC-E scaler bits:

 If (R2 = 0) then chose TAC-E-scaler-0

 Else if (R2 = 1) then chose TAC-E-scaler 1

 Etc…

Do the same for West side, using R3 to control the selection.

4
th
 Latch output

Output to VT201:

(0-12) TAC difference

(13) Unused

(14) ADC-sum-E > th0

(15) ADC-sum-W > th0

Scalers:

(0-6) selected bits of TAC-E

(7-13) selected bits of TAC-W

(14) ADC-sum-E > th0

(15) ADC-sum-W > th0

2. Layer 0 QT Boards: BBQ_BB003

The BBC large-tile QT board receives data from both the East and West sides of the detector.

See documentation from Chris Perkins for a description of this algorithm.

3. Layer 1 DSM Board: BBC_BB102

5

The BB102 DSM board processes data from the BBC-large-tile detector. The algorithm

receives a hit flag and fastest-TAC data for each of the East and West sides of the detector

from the QT board. The hit flags indicate there was at least one good hit on each side, and they

are just passed through to the output. A set of bits specified by the user is chosen from each

incoming TAC value to send to the scaler system. In parallel, the TAC difference is calculated.

The difference is set to zero if either of the two incoming TACS is zero, because a TAC value

of zero implies there were no good hits on that side of the BBC.

RBT File: bbc_bb102_2010_b.rbt

Users: BB102

Inputs: Ch0/1 = QT Board BB003 (East and West)

Ch2/7 = Unused

From the QT board:

bits 0:11 = MAX TAC East (value of zero implies no good hits)

bits 12:23 = MAX TAC West

bit 24 = East hit

bit 25 = West hit

LUT: 1:1

Registers:

R0: BBClarge-EastTAC-select (3)

0 => select bits 0:6

1 => select bits 1:7

…

5 => select bits 5:11

R1: BBClarge-WestTAC-select (3)

Same value definitions as for R0

Action:

1
st
 Latch input

2
nd

 Delay hit bits to 4
th
 step

Calculate: TAC difference = 4096 + TAC-E – TAC-W

Define: Good-TAC-E = TAC-E > 0, same for West side

Make all possible bit selections from TAC-E and TAC-W, including overflow

logic. For example:

TAC-E-overflow-0 = TAC-E(7), (8), (9), (10) or (11)

If (TAC-E-overflow-0 = 1) then TAC-E-scaler-0 = 127

Else TAC-E-scaler-0 = TAC-E(0:6)

Same logic for all possible bit selections from TAC-E (see description of

register R0) and TAC-W (see register R1)

3
rd

 Zero out TAC difference if either Good-TAC-E or Good-TAC-W is false,

otherwise just delay TAC difference to the 4
th
 step

Use R0 to select the TAC-E scaler bits:

 If (R0 = 0) then chose TAC-E-scaler-0

6

 Else if (R0 = 1) then chose TAC-E-scaler-1

 Etc…

Do the same for West side, using R1 to control the selection.

4
th
 Latch output

Output to VT201:

(0-12) TAC difference

(13) Unused

(14) East hit

(15) West hit

Scalers:

(0-6) selected bits of TAC-E

(7-13) selected bits of TAC-W

(14) East hit

(15) West hit

4. Layer 0 QT Boards: BBQ_VP001:004

The VPD QT boards use the same algorithm as the BBC small-tile QT boards. See

documentation above for BBQ_BB001:002.

5. Layer 1 DSM Board: BBC_VP101

RBT File: bbc_vp101_2009_a.rbt

Users: VP101

Inputs: Ch0/3 = Unused

Ch4/5 = QT Board VP003 (East)

Ch6/7 = QT Board VP004 (West)

The VP101 DSM board receives VPD data from 4 QT boards. However, currently only 2 of

those boards (VP003 and VP004) produce data that needs to be analyzed by the trigger system.

The logic needed to do this analysis is the same as that used by the BB101 algorithm. The

VP101 algorithm is therefore identical to the BB101 algorithm in every way, except for the

input map. Please see the BBC_BB101 documentation above for details of the logic.

6. Layer 0 QT Board: BBQ_ZD001

There most recent QT algorithm for use with Proton-Proton collisions was created in 2011.

Please see documentation provided by Chris Perkins for a description.

7. Layer 1 DSM Board: BBC_ZD101

The ZD101 DSM board processes data from the ZDC detector. The algorithm receives TAC

data from the QT boards and calculates the TAC difference. The difference is set to zero if

either of the two incoming TACS is zero, because a TAC value of zero implies there were no

good hits on that side of the ZDC. A user-specified set of bits is then chosen to be passed on to

7

VT201. In parallel, the algorithm also receives the results of comparing various sums to

thresholds, and truncated total sums. These threshold bits are passed through to both VT201

and the scaler system. The truncated sums are just passed to the scaler system.

RBT File: bbc_zd101_2012_a.rbt

Users: ZD101

Inputs: Ch0/1 = QT Board ZD001

Ch2:7 = Unused

From the QT board:

bits 0:9 = West-1 TAC

bits 10:19 = East-1 TACEast

bit 20 = Front West ADC sum > threshold

bit 21 = Back West ADC sum > threshold

bit 22 = Total West ADC sum > threshold

bit 23 = Front East ADC sum > threshold

bit 24 = Back East ADC sum > threshold

bit 25 = Total East ADC sum > threshold

bits 26:28 = Truncated Total West sum

bits 29:31 = Truncated Total East sum

LUT: 1:1

Registers:

R0: ZDC-TACdiff-select (2 bits)

0 => select bits 0:9

1 => select bits 1:10

Action:

1
st
 Latch input

2
nd

 Delay threshold bits to the 4
th
 step.

Delay truncated sums to the 4
th
 step.

Make combination: ADC-sum-E > th0 AND ADC-sum-W > th0

Calculate: TAC difference = 1024 + TAC-E – TAC-W

Define: Good-TAC-E = TAC-E > 0, same for West side

3
rd

 Delay the ADC combination to the 4
th
 step.

Use R0 to select the TAC difference bits for VT201, including overflow logic

and the “good” TAC cut. Also, set the out-of-range bit, i.e.:

If (Good-TAC-E = 0 or Good-TAC-W = 0) then

output = out-of-range = 0

Else if (R0 = 0)

out-of-range = TAC-diff(10)

 If (TAC-diff(10) = 1) then output = 1023

Else output = TAC-diff(0:9)

Else

out-of-range = TAC-diff(0)

output = TAC-diff(1:10)

8

Endif

4
th
 Latch output

Output to VT201:

(0-9) TAC difference

(10) ADC-sum-E > th0

(11) ADC-sum-W > th0

(12) Front-ADC-E > th0

(13) Back-ADC-E > th0

(14) Front-ADC-W > th0

(15) Back-ADC-W > th0

Scalers:

(0-2) Truncated ADC-sum-E

(3-5) Truncated ADC-sum-W

(6) Good-TAC-E

(7) Good-TAC-W

(8) TAC-out-of-range

(9) ADC-sum-E > th0 AND ADC-sum-W > th0

(10) ADC-sum-E > th0

(11) ADC-sum-W > th0

(12) Front-ADC-E > th0

(13) Back-ADC-E > th0

(14) Front-ADC-W > th0

(15) Back-ADC-W > th0

8. Layer 2 Vertex DSM Board: L1-VT201

All threshold bits of the Vertex tree from the large and small-tile BBC, the ZDC and the VPD

are brought into the Vertex DSM. They are passed on to the TCU. In parallel all four TAC

differences are brought into the Vertex DSM. Windows are placed around each TAC

difference, and the “inside window” bits get passed through to the TCU and the scaler system.

Various TAC and threshold bits are also combined to make a minimum bias bit. The four MSB

of the TAC difference from the BBC small-tiles, and the ZDC are also in the scaler output.

RBT File: l1_vt201_2013_a.rbt

Users: VT201

Inputs: Ch 0 = BB101

Ch 1 = BB102

Ch 2 = ZD101

Ch 3 = Unused

Ch 4 = VP101

Ch 5:7 = Unused

From Small tile BBC-DSM BB101

(0-12) Small tile TAC-Difference

(13) Unused

9

(14/15) Small tile ADC East/West sum > th0

From Large tile BBC-DSM BB102

(0-2) Large tile TAC-Difference

(13) Unused

(14/15) Large tile East/West hit

From ZDC DSM ZD101

(0-9) ZDC TAC-Difference

(10) ZDC East ADC sum > th0

(11) ZDC West ADC sum > th0

(12) ZDC East Front ADC > th0

(13) ZDC East Back ADC > th0

(14) ZDC West Front ADC > th0

(15) ZDC West Back ADC > th0

From VPD-DSM VP101

(0-12) VPD TAC-Difference

(13) Unused

(14/15) VPD ADC East/West> th0

LUT: Either 1-to-1 or TAC-difference range conversion

Registers:

R0: BBCsmall-TACdiff-Min (13 bits)

R1: BBCsmall-TACdiff-Max (13)

R2: BBClarge-TACdiff-Min (13)

R3: BBClarge-TACdiff-Max (13)

R4: ZDC-TACdiff-Min (10)

R5: ZDC-TACdiff-Max (10)

R6: VPD-TACdiff-Min (13)

R7: VPD-TACdiff-Max (13)

R8: Minimum-Bias-Select (4)

Action

1
st
 Latch inputs

2
nd

 Delay all 12 input threshold bits to the 4
th
 step.

Also delay copies of the BBC-small, BBC-large and ZDC ADC sum threshold

bits to the 3
rd

 step.

Delay a copy of the BBC-small and ZDC TAC difference to the 4
th
 step.

Compare each of the 4 TAC differences to its minimum and maximum value,

as specified in the relevant registers. The logic looks for the TAC difference to

be greater than the minimum and less than the maximum;

3
rd

 Combine the results of the TAC difference comparisons to determine if each

TAC difference is inside its specified window, e.g.:

ZDC-TAC-diff-in-window = R4 < ZDC TAC difference < R5

Combine (AND) the ZDC ADC sum bits to make the ZDC coincidence bit.

10

Combine the results of the TAC difference comparisons and the ADC

threshold bits to make the minimum bias bit, using R8 to turn each component

on/off, i.e.:

MB = (R8(0) and BBC-S-Tdiff and BBC-S-E>th0 and BBC-S-W>th0) or

 (R8(1) and BBC-L-Tdiff and BBC-L-E>th0 and BBC-L-W>th0) or

 (R8(2) and ZDC-Tdiff) or

 (R8(3) and VPD-Tdiff)

4
th
 Latch Outputs

Output to TCU:

Bit

Name

Description

Bit 0 BBC-TAC BBC small-tile TAC difference in window

Bit 1 BBC-E BBC small-tile East ADC sum > threshold

Bit 2 BBC-W BBC small-tile West ADC sum > threshold

Bit 3 BBC-L-TAC BBC large-tile TAC difference in window

Bit 4 BBC-L-E BBC large-tile East hit

Bit 5 BBC-L-W BBC large-tile West hit

Bit 6 ZDC-TAC ZDC TAC difference in window

Bit 7 ZDC-coinc ZDC East ADC sum > th0 AND ZDC West ADC sum >

th0

Bit 8 Minimum-Bias At least one selected minimum bias component satisfied.

Bit 9 ZDC-E-Front ZDC East Front ADC sum > threshold

Bit 10 ZDC-E-Back ZDC East Back ADC sum > threshold

Bit 11 ZDC-W-Front ZDC West Front ADC sum > threshold

Bit 12 ZDC-W-Back ZDC West Back ADC sum > threshold

Bit 13 VPD-TAC VPD TAC difference in window

Bit 14 VPD-E VPD East ADC sum > threshold

Bit 15 VPD-W VPD West ADC sum > threshold

Output to Scalers

Bit

Description

Bit 0 BBC small-tile TAC difference in window

Bits 1:4 4 MSB of BBC small-tile TAC difference

Bit 5 BBC large-tile TAC difference in window

Bit 6 ZDC TAC difference in window

Bits 7:10 4 MSB of ZDC TAC difference

Bit 11 VPD TAC difference in window

Bit 12 ZDC coincidence

Bit 13 Minimum Bias

Bits 14:15 Unused

